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The
RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

. Computing and Information systems in 1986 to  encourage NASA Johnson Space

Center and local industry to actively “support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
parmershlp with JSCto }omtly define and manage an mtegrated program of research
in advanced data processmg techuology needed for JSC’s main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of .. .

faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Apphed Sciences.
Other Tesearch organizations are involved via the “gateway” concept. UH-Clear

Lake establishes relationships with other universities and research orgamzatlons )

“having common research interests, to provide additional sources of expertise to’

conduct needed research.
A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and_information .

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.
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‘This research was conducted under the auspices of the Research Institute for
Computing and Information Systems at the University of Houston - Clear Lake by
Wayne Warren, Graduate Research Assistant, and Dr. Bong Wie, Assistant
Professor, of the University of Texas at Austin. Terry Feagin, Professor of Computer
Science, at the University of Houston-Clear Lake, served as the RICIS technical
representative.
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aerospace engineer in the Guidance Analysis Section, NASA/JSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official pohcxes either express or
implied, of NASA or the United States Government.
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_ Periodic-Disturbance Accommodating Control of the Space

Station for Asymptotic Momentum Management *

Wayne Warrentand Bong Wie?
The University of Texas at Austin
- Austin, Texas

David Geller®
NASA Johnson Space Center
Houston, Texas

_ Abstract

Periodic maneuvering control is developed for asymptotic momentum manage-
ment of control moment gyros used as primary actuating devices for the Space
Station. The proposed controller utxhza the concepts of quatermon feedback con-
stant torque equilibrium attxtude, wh11e mxmrmzxng the control effort required.
Three-axis coupled equations of motion, written in terms of quaternions, are de-

rived for roll/yaw controller design and sté,loilily analysis. It is shown that the

“quaternion feedback controller is very robust for a wide range of pitch angles. It is

also shown that the proposed controller tunes the open-loop unstable vehicle to a

stable oscillatory motion which minimizes the control effort needed for steady-state
operations.

*This work was supported by the NASA Johnson Space Center through the RICIS program of
the University of llouston at Clear Lake.
'Graduate Research Assistant, Member AIAA.

! Assistant Professor, Dept. of Aerospace Engineering and Engineering Mechanics, Member
ATAA.

§ Acrospace Engineer, Mission Planning and Analysis Division.
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Introduction

The Space Station will employ CMGs (control moment gyros) as primary actu-
ating devices during normal ﬂxght mode operation. Gravity-gradient torques will
be used for CMG momentum unloading. The effect of a constant aerodynamic
torque on a gravitationally stabilized spacecraft was first studied by Garber [1].
Such torques produce constant attitude angles for which aerodynamic and gravi-
tational torques are balanced. Garber has Jsrhown that small roll/yaw librational
motions are affected by large pxtch angles. The aerodynamic disturbance torques
a.ctmg on the Space Station are expected to ha.ve constant values plus periodic com-
ponents caused mostly by the effects of solar panel rotations and Earth’s diurnal
bulge. As a result, attitude and CMG momentum oscillation about the torque equi-
librium attitude will occur. A recent study (2] demonstrates the usefulness of the
linear-quadratic-regulator synthesis technique and the concept of periodic distur-
bance accommodation in minimizing attitude and/or CMG momentum oscillations
as needed for mission requirements.

This paper is primarily concemed with attxtude control and CMG periodic dis-
turbance rejection for large- angle pxtch maneuvers of the Spa.ce Station. New results
and control concepts are used to extend the control scheme developed in [2]. Pitch-
coupled roll/yaw equations of motion, first discussed in (1], and written in terms
of Euler angles, are derived here in terms of quaternions. It is shown that these
equations are well suited for use in designing a roll/yaw controller for large pitch
motions of the Space Station. A simple concept of using quaternions for the con-
trol of spacecraft large-anvgler maneuvers has been developed in 3, 4]. The concept
is extended here to a more complicated case of controlling both the attitude and
CMG momentum of the Space Station. Furthermore, this paper p;resents a new
control concept of asymptotic momentum management of the CMGs, which tunes
the open-loop unstable vehicle to a stable oscillatory motion during steady-state

operations, while minimizing the control effort needed.

Figure 1 is a functional block diagram representation of a quaternion feedback
control system proposed for the Space Station. The attitude determination sys-
tem utilizes rate gyros and star trackers to compute inertial quaternions and the

absolute angular velocity of the Space Station. Relative quaternions with respect
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to a local reference frame are then computed for control purposes. The proposed
attitude/momentum controller utilizes relative quaternions, body rates (or relative

quaternion rates), and CMG momenta to generate proper control torque commands
to the CMGs. '

Mathematical Models

In this section, equations of motion for the Space Station in a circular orbit are
derived in terms of quaternions. For simplicity, the Space Station is assumed to
be a single rigid body. Empbhasis is on the use of quaternions in the equations of
motion and in feedback control. Quaternions define the rigid body attitude as an
Euler-axis rotation. The vector part of the quaternions indicates the direction of the
Euler axis. The scalar part of the quaternions is related to the rotation angle about
the Euler axis. Detailed discussion of the kinematics associated with quaternions
and Euler angles can be found in many texts (see, e.g., (5, 6]).

The rélationships between quaternions and Euler angles, for the pitch-yaw-roll

body-axis rotation sequence used in this paper, are

Q1 cos(6,/2)sin(8,/2) sin(63/2) + sin(f,/2) cos(8,/2) cos(63/2)
g2 | _ | cos(61/2)sin(8:/2)cos(63/2) + sin(6:/2) cos(6;/2) sin(83/2) )
s cos(8,/2) cos(6,/2) sin(63/2) — sin(8,/2) sin(6,/2) cos(63/2)
g4 cos(61/2) cos(8,/2) cos(83/2) — sin(6,/2) sin(8,/2) sin(83/2)

where (6,, 6,, 63) are the roll, pitch, and yaw Euler angles of the body axes with
respect to the local vertical and local horizontal (LVLH) axes, which rotate with
the orbital angular velocity; and (g, g2, ¢3) are the vector parts of the quaternions
which indicate the direction of the Euler axis while ¢ is the scalar part of the
quaternions and is related to the angle of rotation about the Euler axis. Inverse

relations may also be written as:

6, = tan™!

1 - 29 - 243

6, = tan~! 2(‘]2(14 - (11‘13) (9)
? 1 —2q; — 29}

65 = sin™! [2(q1q2 + q;,q.,)] .

['—’(qu - 02‘13)]

The nonlinear equations of motion and attitude kinematics for the Space Station

are as follows:



Space Station Dynamics:

Iy Ly I wy 0 -w;3 w In Li; I wy
{sz I; Ipj w == wy 0 =—u ] [In I; Iy wy
Iy Iy I w3 —w; w; 0 Iz Iy, Iy w3
0 —c o In Iy In; € —u; + wy
+ 31’12 [ C3 0 —C Igl Igg I23 } [ Ca } + —Uz + w, } (3)
- ¢ 0 Iz I; Iy c3 —u3 + w;

where

A,_ R - °
¢ = 2(‘1143 - 92Q4)
A
c2 = 2(q194 + q293)

a
c3 = 1-2¢} — 243

~ Attitude Kinematics r(ﬁiifrhAr&spect to LVLH):

Q1 0 w3 —w+n  w - Q1
@ | _ 1| —ws 0 wi  watn || g (4)
g3 2|w—n —uw 0 w3 g3
d4 —wy —Ww, —n —ws 0 d4

CMG Momentuinf

f:ll 0 —Ww3 o h1 31
hy | + w3 0 —w hy | = up (5)
h3 —Ws W 0 h3 U3 B

w3) are the body-axis components of the absolute angular velocity of
the Space Station; I;; (i = j) are the moments of inertia; I;; (i # j) are the products
of inertia; (hy, A,, h3) are the body-axis components of the CMG momentum; (u,,

us, u3) are the body-axis components of the control torque; (w;, w,,

and (wy, w;,

w3) are the
body-axis components of the external disturbance torque; and n is the orbital rate
of 0.0011 rad/sec.

When body and control axes are aligned with the principal axes of the Space
Station (jl —e- Iu, Iz é 122, 13 é .133), EQS. (3) become

Loy = (I = L)w,ws + 6n%(1, = I3)(0194 + 203)(1 - 2] — 2¢2) = —uy + w,
Lo, - (I3 - 5 )wyws + 6n*(1; - L) (4193 = q290)(1 - QQ? - 2q§) = —uz; + w; (6)
Iyo; - (Il - IZ)UI‘*‘:’2 + 12"2(11 - 12)(‘.71‘13 - 02‘14)(‘1104 + q2q3) = —uz + ws .
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These equations can also be found in (5]. In this paper, however, we present a new
set of equations determined by linearizing the above equations for the case of large

_ pitch angles with small roll/yaw attitude changes. In this case, Egs. (4), (5), and (6)
can be linearized with respect to ¢; and g3 as follows:

Space Station Dynamics:

Lién + n(I; = I)ws + 6n°(1, — I)(qs — 24¢3)as

+ 6n’ (Iz - Is)(th‘h - 92)‘13 =-—-u;+w (73)
- Din + 6n%(I; - I3)(g294 - 2‘14‘12) = —uz +w; (7b)
I3 + n(ly = L)wy — 120%(1) — L)(q2¢})a

—12n*(L - L)(9493)g3 = —u3 + w3 (7c)

Attitude Kinematics (with respect to LVLH):

G = %wx + q2—2w3 + ng; (8a)
f= 2w +n) (8b)
g3 = —%wx + ¢12_4w3 - nq (8¢)
du= =T (wr +n) (8d)

CMG Momentum:

ill - nhs =u
hy = u, (9)
i13 + nh1 = u3.

For the case with large pitch angles and small roll/yaw attitude changes, the re-
latlonsh1ps between quaternions and Euler angles can be simplified by linearizing

W1th respect to 6, and 65 . Equations (1) then reduce to

g = sin%2 (10a)
Q= cos-6-2Z (10b)
Q1 1 94 ¢ 6,
= = ) 10c
[‘13] 2[—92(14}[93] (10¢)
S



Inverse relations for Eqgs. (10c) are written ag~

91] [94 —92][‘11]

=2 . 11
[ 63 92 g1 ]| qs (11)
Equations (7) and (8) may be used to derive the Space Station eq
in terms of quaternions, written as follows:

Iiqq -Iq, [ 0 y [ —q2 .—94 } [ g |
- L -L+1 ,
[Isqz Iq, J 93 trlhi-h+ 1) U4 =92 )| ¢
+n? [ (I — Is)(444 — 69403) (Ir ~— I3)(6g2q? — 4¢2) ] Q1
(2= 1)(g2 + 60203) (L2 — I)(q4 + 6u0?) | | g5

_1ll —u+w
T2 —uz+ws

uations of motion

(12a)
- . 1
Dalgadz — 0244 + 3n*(I3 — 1)(29463 — qiq2) = 5(—112 + wy) . (12b)

The quaternion relations of Egs. (10) may be used to transform Egs. (12) to the
following known form [1, 6] involving only Euler angles:
I]gl + n2(I2 - I3)(1 + 3COS292)01 - n(Il -5L + Is)éa

+ 3n¥(I, - I3)(sinf,c0s6;)03 = —u, + w, (13a)
Igég + 3n2(11 - I3)sin6’2cos€2 = —Uz; + W, (13b)

I3§3 + ‘nz(Ig - Il)(l + 3sin292)93 + n(I; - I2 + Ig)él

+3n*(I; — I)(sinb,c086,)6, = —uz + ws . (13c)

A final linearization with respect to small pitch motions leads to the following well-
known equations of motion:

Space Station Dynamiecs:

Ilél + 4n2(Ig - I3)61 —_ n(Il -_ Iz + I3)é3 = —-u; + Wi . (143)
L6y + 3n*(I) = Iy)6, = —Uz + w, , (14b)
Isbs + n* (L = )63 + n(l, — I + I)f, = —uy + w, (14c)

Attitude Kinematics (with respect to LVLH):

él - n93 = w1 (15&)

éz —nNn=uw, (].Sb)

93 + nGl =Ww3 . (15C)
6
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These linearized equations are used in [2] for the case of small roll, pitch, and
yaw attitude changes. In this paper, emphasis is on the use of Egs. (7) for the
momentum/attitude control of the SpAaéei Station having small roll/yaw attitude
changes but large-angle pitch motions.

Inertia values for the Phase 1 Space Station, as well as assembly flight 3, are
listed in Table 1. Table 2 includes expected aerodynamic disturbances which are

modeled as a bias plus periodic terms in the body-fixed control axes:

w(t) = Bias + Ansin(nt+¢,) + AgnS:iB:(ZTIt+7Eé2) + Aansin(3nt+¢a) +Asnsin(4nt+¢,)

The disturbance torque acting in each axis is determined from data generated at

ANASA Johnson Space Center by a nonlinear mmulatxon program. The program

simulates translational and rotational motions of the Space Station in orbit about

~an _oblate Earth. It includes rotating solar panels, time-varying surface areas, and

time-varying center-of-pressure locations. A Jacchia-Lineberry atmospheric model

to compute density variations. The dominant aerodynamic torque frequen-

“cies at n and 2n are caused by Earth’s diurnal bulge and solar panel rotation

effects, respectively. Actual magnitudes and phases of these disturbance torques

are assumed unknown for control design.

Control Issues

Before presenting the pitch and roll/ s,'aw controller designs, it is important to
clarify some issues related to the effects of large pitch motions and inertia value
uncertainties on the stability of the controlled Space Station. A characteristic of
momentum/attitude control using gravity-gradient torque is that pitch, roll, and

yaw responses will settle down to, or oscillate about, a constant torque equilibrium

attitude (TEA). Primary factors involved in determining the constant pitch TEA

are the magnitude of the bias in the dxsturbance torque and the numerical difference

between roll and yaw moments of mert@. This can be seen by studying the steady-
state form of Eq. (14b): LE

g, = w
27301 - I)



where ; is the pitch TEA anglé and W is the bias of the pitch disturbance torque.
Pitch gravity-gradient torque is largest when the pitch attitude is 45 degrees. This

is predicted in Eq. (13b) where, at the steady-state,

2w
3n¥ (I, - I) -

It may be necessary to consider this worst-case pitch TEA in control system design.

sin (29-2) =

After switching to CMG mode from some other modes (e.g., reboost mode utilizing
reaction jets), the Space Station must be able to achieve TEA in each axis without
CMG momentum or commanded torque saturations.

The large motions possible in the pitch axis emphasize the importance of using
Egs. (7), (12), or (13) in designing the control system. These equations show the
dependence of roll/yaw dynamics on pitch attitude. In fact, a roll/yaw closed-
loop system designed for small pitch angles may become unstable at large pitch

angles; therefore, roll/yaw closed-loop stability must be checked at va

rious pitch
TEA values.

Other factors affecting closed-loop stability are uncertainties and variations in
- moments and products of inertia. In particular, the magnitude of the pitch gravity-
gradient torque depends on the difference between the roll and yaw moments of
inertia. If these inertias are nearly equal (e.g., see Table 1, assembly flight 3 data),
pitch gravity-gradient torque is very small and the pitch TEA (if it exists) is large.
In addition, very small uncertainties in the moments of inertia can cause the system
to become unstable. A discussion of the importance of checking closed-loop system
robustness with respect to inertia unceftainties, by varying ineitia values in an
appropriate ‘direction’, is included in the appendix of this paper.

Under normal operating conditions, the Space Station will have rotating solar

arrays. This causes time-varying (sinusoidal) roll and yaw moments of inertia, and

consequently, a similarly time-varying gravity-gradient torque in the pitch axis as

shown in Fig. 2. If the bias value of L (t)~I5(t) is such that the pitch gravity-gradient
torque never changes sign, the system will remain stable. If the gravity-gradient
torque does switch signs, the system may become unstable, depending upon the how
long the sign of the torque is changed. For sufficiently short periods of this opposite
torque, the system will be stable with large, bounded responses about the TEA. If

gravity-gradient torque is to ultimately be used in momentum/attitude control, the
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above factors will be useful in the design of the inertia configuration. Consideration
should be given to defining a boundary near the point or condition corresponding
to zero pitch-axis gravity-gradient torque, defined by L(t) — I3(t) = 0. This is
illustrated in Fig. 2. The boundary may be thought of as the minimum gravity-
gradient torque allowed in the pitch axis for which closed-loop stability, with respect
to inertia uncertainties, is maintained.

In the next seétiéns the pitch and roll/yaw controller designs are presented
along with time simulations of the closed-loop system. In this paper, we expand
on the previous study (2] by developing a periodic maneuvering controller which
achieves asymptotic momentum management of the CMGs in all three axes. The
Phase 1 inertia configuration listed in Table 1 is used. Effects of products of inertia
are assumed negligible. The corresponding time-varying gravity-gradient torque

~in the pitch axis does not change sign; however, the time simulations presented
here use the assumption that inertia values remain constant while periodic terms
-in the aerodynamic torque include solar panel rotation effects. Large pitch TEA

responses are produced by introducing an appropriately large bxa.s in the pitch-axis
disturbance torque.

Pitch Control

In this section, the pltch -axis controller is developed for attitude and CMG
‘mémentum control. It is shown in [2] that disturbance rejection filters can be used

to reject eizher attitude or CMG momentum oscillations occurring at the frequencies
'present in the disturbance torques. Since asymptotic momentum management of

the CMGs in all three axes is of pnmary mterest in this paper, the disturbance
'reJectxon filters for the pltch axis have the followmg forms:

>ag+(n) az _h2
G + (271) B, = hz
Y2 + (3n)y, = ha
7h + (471)2772 =hy

where initial conditions for the ﬁlter states can be arbitrarily selected (usually zero

initial conditions). Use of filters at frequencies n, 2n, 3n, and 4n is indicated by




aerodynamic torque data generated by a nonlinear simulation program written for
the Space Station. The pitch-axis control logic is given by a single control input
involving twelve states: ) o 7
| u; = Kaoxz (16)

“where :

Kz2 alx12 gain matrix
a : o, - . . 1T
X2 = [ 2 @2 ha Jhy a2 &2 B2 B2 2 1 m ] :

The control task is to find proper gains for this twelve-state feedback controller.

In order to use linear control design methodologies, Eq. (7b) must be linearized
for small pitch motion. This results in Eq. (14b), which is used as the basis for pitch
control analysis and design. Various techniques may be used in selecting the twelve
gains of Eq. (16). These include linear-quadratic-regulator (LQR) synthesis (7
and direct assignment of closed-loop eigenvalues using a pole-placement technique.
Several iterations of any method may be required to achieve satisfactory closed-loop
performance and robustness. Note that gains resulting from Egs. (14b) are for the
use of §; in state feedback. In order to accommodate g, for use in feedback, the
gains corresponding to states ¢; and ¢, are doubled since the approximation used
for ¢; is ;/2. New gains do not need to be computed for the pitch controller in
the case of large pitch motion. It is mostly roll/yaw destabilization at large pitch
angles which forces pitch-axis instability.

The open-loop pitch axis of the Phase 1 inertia configuration is unstable, with
poles at s = +1.5n, 0, 0, and filter poles at s = ijri; +j2n, ij3n} :}:j?}n. One pole
at s = 0 comes from the integral feedback of h,. After iterative use of an LQR
synthesis code, available in CTRL-C software, a set of closed-loop eigenvalues have
been selected and are listed in Table 3. The corresponding gain set is given in
Table 4. Closed-loop pitch responses of Eq. (6), for a pitch-axis maneuver of —30
degrees (caused by a large pitch-axis torque bias), can be seen in Figs. 4, 5, and 6.
Comments on the responses are reserved until after the presentation of the roll/yaw

controller design.

Roll/Yaw Control

The roll/yaw controller has a structure similar to that of the pitch controller. By
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examining the open-loop transfer function matrix from control inputs to roll/yaw
attitudes and CMG momentum, it is shown in [2] that a periodic disturbance at the
orbital rate can be rejected in the yaw attitude but not in the roll attitude. The
analysis is accomplished using Egs. (9) and (14), which assume small motions in all
axes. In an effort to determine if it is possible to have peﬁodic-disturbance rejection
in both roll and yaw attitudes for this different case involving large pitch motions,
a similar analysis is -cgnsidere_d here using the pitch-coupled roll/yaw dynamics
described by Eqgs. (13) .
By combining Eqgs. (9) and (13), the transfer function matrix from (u;,us) to

(61,83) can be written as
]3] 3::%:% Gl [

where

C Gu(s)=-[Ls*+(1+ 332)n2(Ig - I))[s? + n?
Gla(s) = —-[n(Il - Iz + I3)s — 3n2(Ig - I3)sy¢5)[s? + n?]
Ga(s)=[n( - L + I3)s + 3n*(I, — I))sa¢3][s? + n?
Gaa(s) = —[Iis* + (1 + 3c})n*(I — L)][s* + n?]
A = LI3(s* + n?){s* + n?[1 + 3k; + kyks + 3(ks — ky)s2)s? +
[3n%(k3 = ky)saco)s + 4n'k, k)
and s = sinf,¢; = cosby, ky = (I, — )/ Ly, and ky = (I — I,)/I, . Transmission
zeros at £jn appear in the transfer function matrix. It would seem that periodic

disturbances of frequency n cannot be rejected in either the roll or yaw attitudes;

however, for CMG momentum and control torque relations defined by
ill =Y
ila = uj

and with appropriate alterations of Eqs. (13), the transfer function matrix from

(u1,u3) to (6,,83) can be written as

[a0]-3[29 &0 ]

11



where

Gu = (s){~I8> + n’[3(5; - I)s3 - I]s + 3n3(I; — I3)sqc,}

Gz = (ns){(Lz - N)s® + [3n(1; ~ I3)sy¢3)s + (1 + 3sg)n2(I2 n)}
Ga = —(ns){(L; — I3)s? + (1 + 32)n*(I, — L)}

Ga = —{L1s* + n?[3(]; - I)cd + s + 3n?(I = I)sycy)

A = RIy(s){s* + (1 + 3k, + kiks + 3(ks — ky)s2]s? +

[3n(k3 — ky)szc0)s + an'k k,).

Transmission zeros are not apparent in these expressions. A numerical analysis

reveals, however, that there are transmission zeros at +jn for the transfer functions

from u; and u; to roll attitude, while yaw attitude has no troublesome zeros. These

results show that, even for the case of pitch-coupled roll/yaw dynamics, there is

an inability to reject roll attitude oscillations occurring at the orbital rate. Hence,
in this paper, periodic-disturbance rejection for CMG momentum in both the roll
and yaw axes is considered. That i is, a periodic control of the Space Station for

asymptotic momentum management of the CMGs in all three axes is of primary
interest here.

Periodic-disturbance rejection filters for the roll/yaw axes can be represented
as:

&+ (n)lay = hy
B +(2n)*By = hy
1+ (3n)%y; = Ay
i+ (4n)’m = by
&3+ (n)’asz = hy
B+ (2n)*85 = hy
3+ (3n)27s = hy
fis+ (4n)’n3 = hs .

The roll/yaw control logic involving two control inputs and twenty-four states

is expressed as
Uy _ X1
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where

K2 a2x24 gain matrix
A . . . . T

X1 = [ 1w ke [h oo o ﬂl B M N M M ] (roll states)
a . ; . . 17

X3 = [ ga w3 hj fha a3z a3 ,33 ﬂs Y3 Y3 M3 M3 ] (yaw sta.tes) .

The pitch-coupled roll/yaw equations described by Egs. (7) are used as the basis
for the roll/yaw controller design. It is evident in the pitch- coupled equations that
roll/yaw dynamics are dependent upon pitch attitude. Consideration must be given
to rthe pitch-axis TEA when designing the roll/yaw controller gains. Equations (7)
(or Egs. (12) or (13)) are especially useful for this purpose when ¢, and ¢, in the
equations are assigned their respective values corresponding to the expected pitch
TEA (see Eqgs. (10a) and (10b)). As a result, Eqs. (7a) and (7¢) become linear
‘and any linear control design methodologies may be used to design the roll/yaw

For spacecraft mﬁuenced by gravxty gradlent torques, it is interesting to examine

the changes in roll/yaw open-loop eigenvalues that occur as the pitch bias changes.

Thxs was first studied by Garber [1]. A root locus of open-loop eigenvalues versus

pxtch angle, for the Phase 1 mertxa. _configuration, is shown in Fig. 3. It can be seen

“that the open loop roll/ yaw dynarmcs are not very sensitive to pitch attitude. The

Space Station is unstable with poles at s = +1. 05n+j0.7n, 0, 0, £jn, and filter poles

at s =%jn, ijn, :l:JZTl +j2n, +)3n, £j3n, +j4n, £jdn (for 6; = 0° where g,=0 and

q4-—1) The double pole at s = 0 occur because of the integral feedback of h; and
hj. )

After iterative use of an LQR sylltl:esxs code, closed loop eigenvalues have been
selected and are listed in Table. 3. A gain set for Eqs. (17), corresponding to a
pitch TEA of 0°, is listed in Table. 4. For these gains, the closed-loop roll/yaw
axes are stable for p:tch angles rangmg from —21° to +23°. Since a simulation of
the large- angle pltch maneuver needed to reach a pitch TEA of —30° is desired,

a different gain set is used for the simulations presented in this paper. For these

gains, the closed-loop roll/yaw axes are stable for pitch angles ranging from —48°
to +3° Closed-loop roll/yaw responses of Eqgs. (6), for a pitch-axis maneuver of
—30 degrees, can be seen in F1gs 4, 5, and 6. The overall closed-loop system has a

10 dB gain margin and a phase margin of 60° in each control loop.
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Discussion of Simulation Results

Closed-loop responses for a simulation of the nonlinear dynamics described by
Egs. (6) are shown in Figs. 4, 5, and, 6. Quantities plotted include quaternions,
CMG momenta, and control torques. Initial conditions corresponding to 6,(0) =
6,(0) = 65(0) = 1 degree and 91(0) = 92(0) = 93(0) = 0.001 deg/sec are assumed.
Allowable limits on CMG momentum and commanded torque are assumed to be
30,000 ft-lb-sec and 150 ft-1b, respectively.

In the roll axis, quaternion g¢; oscillates (£0.7°) about a toll TEA of —0.003
(61 = —0.5°). Roll CMG momentum 4, is the input to the roll-axis disturbance
rejection filter and settles down to zero after reaching a maximum value near 8000
ft-lb-sec. Control torque u, is zero at the steady-state and has a peak value near
23 ft-1b. In the pitch axis, quaternion ¢, oscillates (:!:4 3°) about a pxtch TEA of
—0.257 (6, = ~30°). The large-angle maneuver causes the pxtch CMG momentum
h; (disturbance filter input) to become quite large at nearly 18,000 ft-1b-sec, before
settling to zero. Control torque u, is zero at the steady-state with a maximum value
near 30 ft-Ib. In the yaw axis, quaternion g oscillates (£1.2°) about a yaw TEA
of —0.013 (63 = —1.5°). Yaw CMG momentum h;, (disturbance filter input) settles

down to zero after reaching a maximum value close to 600 ft- Ib—sec Control torque
ug is zero at the steady-state, and reaches a maximum value near 12 ft-1b.

The simulations show that the proposed control scheme tunes the open- loop
unstable Space Station to a stable, oscillatory motion which minimizes control effort
aur'ng steady-state operations. For the assumed disturbance torque models (with
unknown magnitudes and Phases), the stabilized Space Station needs no control
torque at steady-state conditions. Analysis shows, however, that small-amplitude
periodic components of frequencies 5n and 6n are present in u; and uj at the steady-
state. These small residual components are caused by the coupling between the pitch
and roll/yaw axes, and become particularly noticeable for large pitch biases.

There is an interesting feature of the quaternion feedback scheme which is not
apparent from the simulation responses. If rejection of pitch and yaw attitude
oscillations is desired, it seems natural to use qg and g3 as 1nputs to

the respective
disturbance reJectxon “filters. Even though qg and 93 \v111 become constant at the

steady-state, all of the Euler angles will oscillate. A study of Eqgs. (2) (or Egs. (11))

14

v e wm 8 i €

111

€y

[

i

| i

|

IV

"
|



{n

n-l

BuoE  nm o &

Lot

gny

i

I i

reveals why. By assigning constant values to gs, g3, and ¢4 in Egs. (2) (or Eqs. (11)),
it can be seen that 6y, 6, and 8, are all functions of q1, which oscillates. The same
may be said for q1, 92, g3, and ¢4 if Euler angle feedback is used. For oscillations of 6,
and constant values for 8, and 63, Eqs. (1) show that all quaternions are functions of
6, and will therefore oscillate. In either case, however, these oscillations are small.
The important point is that the elimination of pitch or yaw oscillations, if needed,
may be accomplished by using Euler angles 6, and 65 as disturbance rejection filter
mputs (thh appropnate gam changes)
“““A check of closed- loop robustness with respect to inertia uncertainties empha-
sizes an important issue associated with the Phase 1 inertia configuration. By se-
' Iéeﬁ;g specific ‘directions’ in which to vary the three moments of inertia (h, I, I3),
the closed- Ioop systern can be shown to be unstable for as little as —7% uncertainty
in I; with +8% uncerta.mty in I1 For th&se inertia variations, the pitch-axis gravity-
gradient torque disappears (I; — I; = 0) and closed-loop pitch dynamics become
unstable. The limitations shown in this example (and several others involving even
smaller inertia uncertainties), are not related to the selection of control logic but
are physxcal limitations inherent to the current inertia configuration of the Phase

1 Space Station. A description of the inertia variation ‘directions’ used above j is

presented in the appendlx of this paper.

Conclusions

This paper has presented a new control concept for the planned Space Station
1nvoivmg asymptotic momentum management of control moment gyros. It has
~ been shown that the proposed controller tunes the Space Station, which has a
V grav1tatlonally unstable’ inertia configuration, to a stable, oscillatory motion which
minimizes the control effort needed at the steady- state. By utilizing the concepts of
quaternion feedback control and perlodxc disturbance rejection filters, the proposed
controller provides robust control of the Space Station for large-angle pitch motions.
The pitch-coupled roll/yaw equations of motion derived in this paper have been

shown to be particularly useful in roll/yaw controller design and stabxhty analysis.
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Appendix: Inertia Variations for Checking Closed-Loop Stability

It is a common practiée in control design to satisfy time and frequency

requirements first, then check for closed- loop robustn&ss

-domain

For spacecraft, inertial

properties may be very sensitive parameters in the closed loop system. It seems

reasonable to increase and decrease all inertias by the same percentage, thus check-
ing controller effectiveness for a proportxonaﬁy heavier and lighter spacecraft. This
procedure may not indicate the true inertia sensitivity. It is important to consider
the magnitude and direction of the variation for each inertia value. Since the inertia
matrix may be transformed to three principal moments of inertia by aligning the
body and principal axes, sugg%tlons for vanatlons m the moments of inertia for
the roll (1), pitch (I;), and yaw (I3) axes are pr&eented here.

Three important relationships may be derived from the definitions for the mo-

ments of inertia. These relatxonsths are as follows:
L+L>5L L+L>Ih, L+Li>1.

Together, these relations define the physically possible inertia configurations. A
control designer may unknowingly use inertia veriations which result in inertia val-
ues that violate these constraints, Stability of the closed-loop system will be tested
for a physically impossible inertia configuration. The important point is not the
fictitious inertias but whether or not the control designer can redirect this extrane-
ous stability margin to encompass more of the region of physically possible inertia
values.

When gravity- -gradient torque is used in the control of a spacecraft, additional
inertia constraints are introduced. The control scheme presented in this paper is a
good example. Equations (14) show that the additional constraints are I; # I3 and
L#Lsinceh,=LandIl, =1, correspond to zero gravity-gradient torque in the
roll and pitch axes, respectively.

A useful aid for visualizing the relationship between inertia constraints and iner-
tia variations is nowﬁpresentéd. Figure A.1 shows a three-dimensional, cubic figure
defined in three ‘inertial’ directions. The inertia constraint relations may now be
visualized as planes in this ‘inertial’ space. Theplanes 1, + I, = I, I +1I3=1I;, and
I+ I = I are labeled in Fig. A.1, and represent the physical boundaries of inertia

values. The area inside the three intersecting boundaries represents all physically
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possible inertia configurations. A representation of the cut-away portion of the ‘in-

__ertia cube’ is shown in Fig. A.2. Planes defining the physical and gravity-gradient

boundaries are labeled. Spacecraft inertia configurations which are open-loop stable
for gravity-gradient control schemes may be identified by requiring positive coeffi-
ciénté for the <;ben-100p pitch, and roll/yaw characteristic equations (see Fig. A.2).
The resulting stable configurations are represented by the region in Figs. A.1 and
A.2 where I, > I} > I,. Figures A.1 and A.2 provide a three-dimensional represen-
tation of the information presentequin;it;hgEgﬂvegsrus ky inertia ratio plots found in
5, 6]. It may be convenient to normalize the moments of inertia being studied by
\/I?ng:-—[g in order to locate the position of the nominal configuration within
a ‘unit inertia cube’. The relative positioning of the nominal inertia configuration
from the constraint boundaries can then be easily determined.

Since the shortest distance from a point to a plane is in a direction perpendicular
to that plane, it seems logical to check inertia variations in directions perpendicular
to the inertia boundaries. In this way, the minimum variation necessary to reach
a physical boundary can be found while checking the closed-loop stability of the
system in question. For gravity-gradient control systems, inertia variations perpen-
dicular to the planes I, = I, and I, = I are needed. It may be seen in Fig. A.2
that these planes intersect inside the region of physically possible inertia values,
and partition the region into several sections. It should be a control designers’ goal
to include the area within the physical boundaries inside a ‘control surface’ which

contains all of the inertia values for which the closed-loop system is stable.
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Table 1. Space station inertia
configurations

Inertia  Assembly
(slug-ft?) Flight#3

Phase 1

Iy 23.22E6
I 1.30E6
I3 23.23E6
L,  —0.023E6

" Is 0.477E6

. Ip —0.011E6

50.28E6
10.80E6
58.57E6
—0.39E6
0.16E6
0.16E6

Table 2. Phase 1 aerodynamic torque models
o (in units of ft-1bs)

W, 1+sin(nt)+0.5sin(2nt)
e ~7 " 40.3sin(3nt)+0.5sin(4nt)
w2 13* + 1.2sin(nt)+3.5sin(2nt)
- ~ +0.3sin(3nt)+0.5sin(4nt)
w3 1+sin(nt)+0.5sin(2nt)

<. +0.3sin(3nt)+0.5sin(4nt)

* nominal pitch bias torque is 4 but 13 is used
to produce a large pitch TEA

Tabl

able 3. Phe;seil closed-loop eigenvalues

(in units of orbital rate — 0.0011 rad/sec)

Momentum/Attitude Disturbance Filters
Pitch -1.0,-1.5 -1.5£j1.5 —0.3£j1.0 -0.3%£j2.0
~0.3+§3.0  —0.3+j4.0
Roll/Yaw | —0.23,-0.71 —0.53+j1.54 —0.14+£j0.99 -1.13%j0.75

—1.04£j0.70 —1.06+j0.71

—-0.19£j2.01 —0.474j2.20

~0.324j3.02  —0.684j3.21
—0.534j3.97 —0.25+j4.00
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Table 4.

Phase 1 controller gains
Pitch Units Roll/Yaw* Units
[K.)T - [K])T
4.2425E+2 (ft-1b/rad) 3.8526E+3 3.7381E+2 (ft-1b/rad)
2.5412E+5 (ft-lb-sec/rad) 1.2003E+6  1.0126E+5 (ft-lb-sec/rad)
1.4840E—2 (ft-Ib/ft-Io-sec) 14360E~2  1.9364E—3 (fe-Ib/ft-Ib-sec)
4.0150E—6 (ft-1b/ft-Ib-sec?) ~16361E-6  2.7852E—7 (fe-lb/ft-lb-sec?)
—1.9064E—9 (ft-lb-rad?/fi-lb-sec’) | 3.6578E~10 —1.8526E-10 (ft-lb-rad?/ft-Ib-sec?)
2.1970E—6 (ft-lb-rad?/ft-lb-sec?) | 7.6282E-7 1.1857TE—T (ft-lb-rad?/ft-lb-sec?)
—4.6097E-9 (ft-lb-rad?/ft-lb-sec®) | —3.2712E-9 -5.7517E-10 (ft-1b-rad?/ft-1b-sec?)
~$.2383E~7 (ft-lb-rad?/ft-Ib-sec’) [ ~3.3865E-7 —1.6409E—7 (ft-Ib-rad?/fe-Ib-sec?)
~8.3793E-9 (ft-lb-rad?/ft-Ib-sec’) [ ~1.0702E-8 —1.1317E~9 (ft-lb-rad?/fe-lb-sec?)
~1.9423E—6 (ft-Ib-rad’/ft-lb-sec’) | ~3.4827TE~6  —5.3664E—7 (ft-Ib-rad?/fs-Ib-sec?)
—~7.3458E-9  (ft-lb-rad?/ft-Ib-sec’) [ ~1.5903E-8 —1.5491E~9 (ft.lb-rad?/fe-lb-sec)
~2.6056E~6 (ft-lb-rad?/fr-Ib-sec?) | ~3.1256E~6  —4.7197E—7 (ft-Ib-rad?/ftIb-sec?)
9.4016E+2  2.4994E+2 (ft-Ib/rad)
~1.2743E+5 1.1386E+5 (ft-1b-sec/rad)
~24992E~3  —3.5209E—3 (ft-Ib/ft-lb-sec)
=7.3398E-7  —1.0348E—6 (ft-Ib/ft-lb-sec?)
4.8557E—-9 -5.5935E~-10 (ft-lb-rad?/ft-1b-sec?)
3.7017E~7  —-4.2651E-6 (ft-lb-rad?/ft-1b-sec?)
2.0608E-9 —6.8224E—10 (ft-lb-rad?/ft-lb-sec?)
1.8854E—-6  —2.4769E-6 (ft-lb-rad?/ft-lb-sec?)
40142E-10  9.4962E—10 (ft-Ib rad?/ft-Ib-sec?)
15548E~6  —2.7820E—6 (ft-Ib-rad?/ft-Ib-sec?)
8.3363E-10 8.3453E-10 (ft-lb-rad’/ft-lb-sec:‘)
1.3125E~6 -2.5757E—6

(ft.-lb'-ra.d2 /ft-1b-sec?)

* Designed for a pitch TEA of 0°
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I/L indicates inertial frame with respect to LVLH frame

Fig. 1. A quaternion feedback control system
- for the Space Station.



Fig. 2. Time-varying pitch-axis gravity-gradient torque derivative.

Gravny—Gradknu.Torque'DchaLhw

Boundary

Safety Margin for Inertia Uncertainty

.8
.6F

=3

U

I at

=

=
.2
o
0.

1.2

0.5 1.0 1.5 2.0
(orbits)

s—planre'

0.8t

0.0

0.4}

-0.8}F

1.2

X LBCATES ZER8 PITCH AMGLE

Flg 3. Plot of roll/yaw open- Ioop poles versus pitch angle

in the s plane (s in units of orbital rate).

|

!
J

L I TN

Qi

il

"
il

I

l
|l

€l

(O DR

! |

|

i

L

I
h‘

Ui

Qi



i | (N N A A

th

e

o
o L T Y T
Q
o
°'<
o.
°
?" -4
N
AP 2.00 4. 00 6.00 8. 00 10. 00
TIME (ORBITS)
4
o T T T T
8
o -
N
co
-
?- -
o
°
? T =T T T
0. 00 2. 00 4.00 8. 00 8. 00 10. 00
TIME (ORBITS)
N
o
o = T T T T

Q3

-0.02

0. 00

-0.04

0. 00 2.00 4.00 6.00 8. 00 10. 00
TIME (ORBITS)
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Fig. A.1. Physical boundaries of inertia values. =
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Open-loop characteristic equations for a spacecraft with a
gravity-gradient control scheme:

Pitch axis:
L{s® + 3n%k,} =0
Roll/yaw axes:
LI{s* 4+ n?[1 + 3k, + kiks)s? + 4n'kiks} =0
where ki = (I = )/1,, ky = (I, - L)/ Iy, and ks = (I, - I) /1.

| L=1I
L=I , L+IL=1

L>I1I > 1 I3>Iz>Il

Fig. A.2. Regions within the physical boundaries.






